

Computational approaches to explore variation and dynamics in ribosomal DNA sequences

Rob Davey NCYC 2008

- Ribosomal DNA and variation
- Computational methods
- Preliminary Results
- Conclusions

- *Saccharomyces* Genome Re-sequencing Project
- Ed Louis, Nottingham and Richard Durbin, Sanger
- Whole genome shotgun sequence (WGSS) for
 - 34 haploid *S. cerevisiae*
 - 36 S. paradoxus
 - 1-3x coverage (>1,000 Mb)

- rDNA provides 'roadmap' of species diversity (26S)
- Drill down to fine-scale sub-species diversity (ITS)
- Tandem array of 100-200 copies on Chromosome XII (~60%)
- YGD lists two identical copies (left- and rightmost copies)
- All other copies assumed identical (evolutionary theory predicts rapid homogenisation by gene conversion)
- SGRP dataset enables us to test this prediction

- WGSS produces reads with associated quality per base (FASTQ format)
- Cannot assemble repeats due to high similarity (*Ganley 2007*)
- Single rDNA repeat consensus alignment for each strain
- Need a way of computing:
 - reads that align to the rDNA repeat consensus
 - reads that are of sufficient sequence quality to be accurate
 - quantifiable differences between consensus and read
 - SNPs = 100% read variance compared to consensus
 - pSNPs = 'partial SNPs' 0% < x < 100% read variance
- TURNIP (Tracking Unresolved rDNA Nucleotide Polymorphisms)
- Perl

TURNIP

consensus

..agcaaactgtccgggcaaatcctttcacgctcgggaagctttgtgaaagcccttctctttcaa..

ccgggcaaatcctttcacactcgggaagctttgtgaaagcccttctctttcaa.. ..agcaaactgtccgggcaaatcctttcacactcgggaagctttgtgaaagcccttctcttt ctgtccgggcatatcctttcacactcgggaagctttgtgaaaagccct ..agcaaactgtccgggcatatcctttcacactcgggaagc---gtgaaagcccttctctttcaa.. ..agcaaactgtccgggcatatcctttcacactcgggaagctttgtgaaagc gcaaactgtccgggcatatcctttcacactcgggaagctttgtgaaagc gcaaactgtccgggcatatcctttcacactcgggaagctttgtgaaagc scaactgtccgggcatatcctttcacactcgggaagctttgtgaaagc cttctttctttcacactcgggaagctttgtgaaagc ..agcaaactgtccgggcatatcctttcacactcgggaagctttgtgaaagc ..agcaaactgtccgggcatatcctttcacactcgggaagctttgtgaaagccttctctttc ..agcaaactgtccgggcaaatcctttcacactcgggaagctttgtgaaagcccttctctttcaa..

pSNP	SNP	DEL	INS
4/8			
(50%)			

- Assume that there is an equal probability that a read sequence is obtained from any of the repeat units
- Quantifiable microheterogeneity would provide a phylogenetic signal for comparative genomics and test for mathematical models of gene conversion

- Take 20bp slices of consensus (query sequence)
- Anchored on each side by 40bp flanking sequence to give a more accurate alignment

- 'sliding window' of 100bp segments
- Gapped BLAST against FASTA database of shotgun reads
- For each hit above threshold, take highest scoring pair (HSP)
- Store template query sequence and each *distinct* HSP subject sequence at each sequential window position for alignment
- Run multi-alignment (MUSCLE) on subject sequence dataset against template segment

- For each 20bp slice, check quality for each associated read
 - Span introduced gaps with surrounding quality scores
 - Ensure all 20 bases have PHRED quality score > threshold
 - Variation less likely to be sequencing error
- For each accepted 20bp slice, check for insertions, i.e. gaps introduced into BLAST query sequence by MUSCLE

TURNIP

- At each position, record the query letter(s), subject letter(s), quality and read name
- Compare each position to the original consensus

```
3640: t (32) -> a (1) pSNP
```

- 4810: a (0) -> g (41) SNP
- 5680: c (13) -> (27) DEL
- 6700: ----- (3) -> actgg (42) INS
- Outputs
 - Raw text, Excel, SQL, GFF
 - Use GFF to import data into GBrowse

Preliminary Results

14 S. cerevisiae strains - Mosaic vs Structured

- Two genome types, structured and mosaic (Carter 2008)
- Structured 'clean' genome, assumed pure lineage
- Mosaic genetically different cell lines from a single zygote (hybrid)

IFR Science Day 2008

Preliminary Results

14 S. cerevisiae strains - Mosaic vs Structured

GBrowse

GBrowse

IFR Science Day 2008

- Variation within individual S. cerevisiae rDNA repeats to be remarkably high
- Differs markedly between strains
- Some pSNPs strain specific, others shared between a number of strains, potentially at variable frequencies
- Correlation between genome type and pSNP number
- On average structured genomes have fewer pSNPs, hybrids tend to have more
- pSNPs may provide simple measure of genome mosaicism
- Shared pSNPs between different lineages may provide novel measure of recombination rates and gene conversion
- A new way to aid strain identification? Supply of probiotic S. boulardii across EU requires precise quality control

Acknowledgements

NCYC

Ian Roberts

Steve James

JIC

John Walshaw

Jo Dicks

ΜΙΤ

Michael O'Kelly

http://www.ncyc.co.uk

Sanger

David Carter

BBSRC TRDF Project

